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Fig. 4 Deviation of the rough-wall skin-friction coefficient from the
smooth-wall value in function of the scaled height of the first cell of the
grid (Mach 4, Rg =8 x 10%).

the limit is the same for two different codes, both based on second-
order-accuratenumerical schemes. The behavior below this limit is
different, with the common point that none of them is desirable.

The precedingsectionshows thatthe grid-convergedskin-friction
coefficient behaves linearly with k£ in the range k" = 0 — 10. This
section shows that for a given k" the height of the first cell off the
wall mustbe at mostkf /2 in order to avoid a spurious solution. The
last question to address is how small the first cell height must be in
order to be close to the grid-convergedrough-wall solution.

Grid Convergence of the Rough-Wall
Boundary-Layer Solution

Figure 4 shows the behavior of deviation (2) for three values of
k} when the grid is refined near the wall. The symbols are the ac-
tual results of computations with GASP in the Mach 4 case for
Ry =8 x 10°. The lines are second-order polynomial fits of the
computed data. The gray zone represents the range +1% around
the smooth-wall grid-converged value C . It is obvious that the
smaller k", the larger the grid-sensitivity of the solution. The val-
ues of Cf (k+) reach the limit —1% to C o, when Ay1 ~k} /2. For
k below 0.5, the computed solution then stays in the 1% range
when the grid is further refined. However, for k" above 0.5 (see the
case k- =2 in Fig. 4), the skin-friction value goes on through the
=+ 1% range and reaches the significantly different grid-converged
value associated with k. In each case the 1% limit to the grid-
converged rough-wall eolutlon is reached when the first cell height
is about 0.2.

In Ref. 4 Menter proposes using the following rough-wall BC for
w: Bow, = 60v,,,/Ay12. This conditionis equivalentto the rough-wall
BC equation (1) if k, = /(NB,/60) Ay,, which correspondsto a ra-
tiok /Ay verycloseto 2 (1.94). As justnoted, this relation has the
exacteffect to keep the solution at the edge +1% of the smooth-wall
value C s forvaluesof k" between0-5 atleast: the grid-convergence
error compensates for the difference between the rough-walland the
smooth-wall values of the skin-friction coefficient.

Conclusions

The value of the skin-friction coefficient obtained on a flat plate
with the k—» model and the rough-wall boundary condition for @
is highly sensitive to the scaled roughness height k. This sensitiv-
ity, for k} below 5, is unphysical. When k" tends toward zero, the
grid-converged computed skin-friction coefficient tends toward the
smooth-wall value C s,. The deviation from C is directly propor-
tionalto k", with a very weak dependanceon the Mach and Reynolds
numbers. Namely, Cr(kt, Ry)/Cro(Rg) =1+ (1.8£0.2) kS /100.
This linear relationshipis not observed when the grid is too coarse
to capture the asymptotic behavior of w near the wall: with usual
second-ordernumerical methods the first cell height must be smaller
than k" /2 to avoid spurious or diverged solutions. The observa-
tion of the relation k" /Ay,” 22 in the range k;” = 0 — 5, as recom-
mended by Menter, is sufficient to avoid spurious solutions, but not
to get grid convergence.Quite surprisingly,the grid-convergenceer-
ror in the rough-wall solution yields almost exactly the smooth-wall
value of the skin friction. Finally, for the rough-wall skin-friction
coefficient to be as close as x% to the smooth-wall value in a grid-
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converged way, kI must be equal to x/2, and the first cell height
must be below the minimum of 0.2 and k" /2.
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Nomenclature
a = radius of pipe
F(tr) = nondimensional f(¢)
f = Fanning friction coefficient for pipes, 7,/ % pw2,
f@® = pressure gradient, —dp/dz
K = consistency index
K’ = [Bn+1)/4n]"K
L = section of pipe considered
! = l,/a
L = turbulent mixing length
n = power-law exponent
p = pressure
0 = volume flow rate, ma’w,,
R, = Reynolds number; Eq. (10b)
r = radial distance from the centerline
T = time used in nondimensionalization
T, = Reynolds averaged stress component
t = time
u, = friction velocity, (t,,/p)'/?
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w = a(@m/n+1)(aAp/2KL)'/"

w = Reynolds averaged axial velocity
Way = velocity averaged over a pipe section
wt = w/u,

y = distance from the wall, a —r

yt = py'ul "/K

z = axial coordinate

o, B = parametersin F'(7)

r = |dg/on" !

Y = Plag/on

Ap = pressure drop

n = nondimensionalradial distance, r/a
0,v, A functions defined in Egs. (3) and (5)
0 = density

T = nondimensionaltime, /T

Trs = Reynolds stress

Ty = wall shear stress

@ = nondimensional velocity, w/ W

X = nondimensionaly, y/a

w, ¢ = defined in Egs. (6) and (9)

) = Reynolds average

Introduction

HE subjectof flow of polymericfluids has of late become of suf-

ficient importance and interest to the science and engineering
of aeronautics. It has been known for quite some time that the addi-
tion of polymers in Newtonian fluids reduces the drag on bodiesin a
dramatic way. Much work has been done in the physical and chemi-
cal properties of polymers and in the formation of their constitutive
equations, e.g., Wilkinson,! Bird et al.,>® and Berman,* among oth-
ers. Becausemost of the polymericfluids can be approximated,some
time quite closely, as power-law fluids, the purposeof this Note is to
study the turbulent power-law fluids through circular pipes. A mix-
ing length model for Reynolds stress that is valid in the steady state
has been used. Following the leading works of Dodge and Metzner’
and Wilkinson,! a formulationof Prandtl’s mixing length for steady-
state flow has been proposed in this Note. Numerical solutions of
the governing equation of motion have been obtained, both for the
startup flow (impulsive start with a constant pressure gradient) and
also of a superposed sinusoidal pressure gradient. For the purpose
of comparison, the laminar polymeric flow solutionsunder the same
types of pressure gradients have also been reported here. Laminar
solutions have been obtained earlier by Edwards et al.% Birdetal.,’
and Warsi,® among others.

Analysis
We start our considerationsfrom the equation of motion of a con-
tinuum [e.g.,Ref. 9, Eq. (2.33)] and next considerits transformation
to orthogonal curvilinear coordinates [Ref. 9, Egs. (3.115-3.118)].
We take the orthogonal coordinates as the cylindrical coordinates
(r, ¢, z) and introduce the velocity components, pressure, and the
stress components as the sum of their mean and perturbation. On
taking the Reynolds average of each term and assuming the average
of the stress perturbationto be zero, we get the averaged equations.
Using these averaged equations for the axial flow through a circular
pipe, we obtain the equation
ow 10 - 19 _
P =f0+ rar(rTrz)+ . ar(rfrz) )
where T’ isneglected. Consideringthe flow to be thatof a power-law
fluid, we take

. dw|"”
Trz =K|—
or

"ow

or (22)

where, for a pseudoplastic fluid (solutions of polymers), the expo-
nentn < 1. The Reynolds stress is modeled by the Prandtl’s mixing
length theory as

815
8r

ow

or (2b)

= 2
Ty = ,Olm

Substitutionof Egs. (2) into Eq. (1) resultsin the differentiationof
absolutevalues. To circumventthis problem, we changethe indepen-

dent variable r to y, where y =a — r. With this change dw/dy > 0
throughout from y =0 to y = a, we can remove the absolute value
sign. Further, introducing the nondimensional variables

X =y/a, p=w/W, t=1t/T, l=1l,/a
and taking
n+1 TF(t n
POl ’ f():F(r)’ _re
KWn—1 oW KWn=2
n—1 n—1
a a a a
r=(2 |22 L, =p(ZE)=p2ZE|
ax ax ax ax

while opening the derivatives and changing the variable x to n

through x =1 — 7, we finally have
0
£ = F@) + =% w— )
at

where

0=T+xry —2xpl'/l, Yy =T+4+2xry/n 5)

In this Note we consider the pressure gradient function f(¢) in
the form

f(@® = Ap/L + pcsinwt (6)

which covers both the startup flow (case ¢ =0) and the superposed
fluctuations over the constant pressure gradient. To obtain F(t)
defined in Eq. (3), we must assign a form to W. Here we are guided
to the form

W =n/(n+DI(1/2K)(Ap/L)a" 11" -

which reduces to the value of centerline velocity for the Newtonian
case where n = 1 and K = p. With the choice of Eq. (7), the function
F(7) givenin Eq. (3) is

F(z) = (a""'/KW") f(1)

=2[(n + 1)/n]"(1 + asinB1) (8a)
where
a = pcL/Ap, B =0T (8b)
Further
A= pa"/KW"=2 = [(n+1)/n]" 220~ DIn¢ (92)
where

s = (pa*/K*")(@aAp/L)> "/ (9b)

Numerical Solution and Velocity Distribution

A deeper look at the stated problem, which aims at finding the
steady-state distribution in polymeric fluids with turbulence, sug-
gests the use of complex approaches with transitional and wall ef-
fects with very small grid size near the wall. In this Note, however,
we approach the problem by starting the solution from some match-
ing point of the logarithmic layer and consequently use certain re-
sults from the pioneering works of Dodge and Metzner, which have
been elucidated in Ref. 1. The results from Ref. 1 for the flow of
polymeric fluids through a circular pipe are stated in the following
and are valid only for the steady turbulent state:

1) Coefficient of friction (Fanning coefficient f):

1/\/7 — (4.0/,10.75) 10g [Rglfl—n/Z] _ 0.4/111'2 (103)

where
3n4+1Y\"
, K’:("+ )K (10b)
4n

p(2ay 2 "
8n —1 K’

R, =

e

2) Near-wall velocity distribution:
In the sublayer w™ = (y™)"/", where

w+=u_)/ur, —,Oy"u2 n/K U, :(rw/p)%
which in terms of ¢(n) is
o) = a(l — ) (p/K)"" ()" [ W (11a)
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where

W= (Bn + Dy

11b
n+1 (116)

In the turbulent core region the logarithmic velocity distributionin
terms of ¢(n) is

u, | 5.66 pa" (1 —np)uz=" 0.4
o) = ANGE lo —x

0.75

2.458 1
4+ ——11.96+1.255n — 1.628nlog | 3 + — (12)
n n
All of the formulas (10-12) reduce to the flow of a Newtonian fluid
through a circular pipe for whichn =1, K = p.
Havingprescribedthe valuesofa, K, L,n,and A p, firstthe values

of W and R, through Egs. (7) and (10) are calculated. The value of
W, is available through Eq. (11b). The values of n and R, are used

1

in the transcendentalequation (10a) to compute f. We now choose
a value n =1, close to 1 where Eq. (12) is applicable. The value
of ¢(n,,) from Eq. (12) provides one of the boundary conditions
for the solution of Eq. (4). Equation (12) also guides us to choose
the proper form of the Prandtl’s mixing length. Differentiation of
Eq. (12) with respect to n guides us to the Prandtl’s mixing length
for power-law fluids as

L, =04y/n%%  or 1=04(1—n)/n">  (13)

It must also be realized that we have posed a time-dependent prob-
lem through Eq. (4). For a startup flow the flow is not turbulent in
the beginning, but because we are interested only in the steady and
periodicallynonsteady flows we have arbitrarily introduceda damp-
ing factor of time in the value of ¢(1,,) as shown in the numerical
example stated next.

For a numerical demonstration we have considered the poly-
mer solution (0.5% hydroxyethylcellulese at 313°K) for which the
parameters from Bird et al.? are

K=03Pa-s"

n = 0.595,
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Fig.2 Centerline velocity of a power-law fluid in laminar flow state with superposed sinusoidal pressure: o =2.5 and 3=25.0.
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Fig.3 Centerline velocity of a power-law fluid in turbulent flow state with startup condition.
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Fig. 4 Centerline velocity of a power-law fluid in turbulent state with superposed sinusoidal pressure: o« =2.5 and 3=25.0.

Further, we have taken

Ap =1.7kPa, L=1m, a =3.556cm
o = 1000 kg/m’
Calculations using these parameters give
f =0.003122, W = 30.8703 m/s, R, =82,729.6

(The value of f at the stated value of R, for Newtonian fluids is
2~0.0046.) The Prandtl’s mixing length taken from Schlichting'®
and modified according to Eq. (13) is taken as

[ = (0.14 — 0.085> — 0.06n*) /n®% (14)

In the present calculation we have chosen five grid points, with
An=0.01, which are embedded in the sublayer and part of the
logarithmic layer. Thus, 1,, = 0.95 at which ¢(n,,) =0.476203. As
noted earlier, we make it time dependent as

@, ) = 0.476203[1 — exp(—ty/c, R, /2)]  (15)

Thus, the initial and the boundary condition for the startup flow for
Eq. (4) are

o(n,0) =0, ©Mm» T)

prescribed as in Eq. (15). Equation (4) is discretized by using a
forward difference in t and central difference in n The resulting
equation is solved by Young’s algorithm using Newton’s iteration.
On the centerline the value of ¢ (0, 7) is not known, but use has
been made of ¢'(0, 7) =0. Figures 1 and 2 show the centerline
velocity ¢(0, ) = ¢, for the startup and superposed fluctuations
for the laminar case. Figures 3 and 4 show the centerline velocity
¢(0, 7) =¢. for the turbulent case. The preceding data give the
referencetime 7 = 65.302 s.

Conclusions
Numerical solution of the turbulent flow of polymeric fluids, ap-
proximated as power-law fluids, has been obtained for flows through
circular pipes. In this Note due advantage has been taken of the em-
pirical formulas for the turbulent flow through circular pipes. A
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new mixing length formula for power-law fluids has been proposed.
Though the solutions have been obtained from 7 =0 to the steady
state, the transient solution can be considered as a parametric con-
tinuation, i.e., nonphysical solution caused by a lack of transitionto
turbulent flow modeling and transient turbulent modeling. Steady
state sets in around T >~ 0.5.
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with Large Displacements
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Nomenclature

[Kip], [Kip] = linear bending and stretching stiffness
matrices

[K,], [K3], and [K4;] = components of nonlinear stiffness
matrix

[M,], [M,] = bending and in-plane mass matrices

[N] = matrix of shape functions

{q} = generalized displacements

u and v = in-plane displacements

w = transverse displacement

o = damping parameter

Introduction

O characterize the geometrically nonlinear dynamic behavior
of plates, it is useful to define their periodic response to har-
monic excitationsin the frequency range of interest. There are sev-
eral ways to carry out this task.! When finite element (FE) models
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are used, one often applies the harmonic balance method (HBM)?
or the incremental HBM.? In these methods the number of nonlin-
ear equations to solve simultaneously increases with the number of
harmonics used and can be very large. Moreover, the model will be
incorrectif the appropriateharmonics are notincludedin the Fourier
series.

The time-domain shooting method'* has two major advantages
when compared with the HBM. First, the number of equations to
solve is of the order of the original system. Second, it does not de-
pend on an a priori assumption of the number of harmonics present
in the motion’s Fourier spectrum. Unlike time-domain integration
methods applied on their own, like Newmark’s method, the shooting
technique provides a systematic procedure of calculating the peri-
odic motions in a certain frequency range and converges to stable
and unstable solutions. Moreover, the shooting method gives as a
byproduct the monodromy matrix, the eigenvalues of which define
the solutions’ stability.!

In this work an algorithm based on the shooting and Newton
methods is used to solve the FE equations of motion of isotropic
plates. To validate it and to demonstrate that this algorithm has ad-
vantages when compared with other methods, results are compared
with published ones.

Finite Element Equations of Motion;
Shooting and Newton Methods

The hierarchical FE method used to model geometrical nonlinear
vibrations of thin, elastic, isotropic plates is described in Ref. 2.
The model is derived applying the d’ Alembert’s principle and the
principle of virtual work. Consideringstiffness proportional viscous
damping, a system of n equations of motion of the following form
is derived:

el 2l
0 [Mb] iiw 0 [Klb] qw
[Klp] [KZ] dp PP
= 1
* [ [K3] [Klb] + [K4]} {qw} {Pw} ( )

(M]1{G} + a[K1{q} + [KNL]{q} = {P} 2)

or

The subscripts p and b indicateif the vectorsand matrices are caused
by the in-plane or bending effects.

Only fixed boundary conditions will be investigated, and, be-
causein this case the middle plane in-plane displacementsare much
smaller than the transverse displacement, the in-plane inertia and
damping will be neglected. The excitation vector { P} is periodic
with excitation frequency w.

To apply the shooting method, the system of n second-orderdif-
ferential equations of motion (1) is transformed into the following
2n system of first-order differential equations:

o 7 [s], [-M 0 Tfy]_[o
[[M] a[KJ“q}+[ 0 [KNLJ“q}_{P} @

The period can be normalized to unity, by means of transformation
v =1t/T,sothatthe integrationtime intervalis [0, 1]. Therefore, the
system of differential equations (3) becomes

[ 0 [M]} {y’(r)}
(M] «[K]1] |q'(x)

(-0 o)
P 0 [KNL] | | g(7)

where the prime denotes differentiation with respectto 7.

By using a 2n phase-spacevector {X (t)} = {y(z), ¢(t)}, one can
write an initial value problemrelated to the boundary-valueproblem
(4) as follows:



