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Fig. 4 Deviation of the rough-wall skin-friction coef� cient from the
smooth-wall value in function of the scaled height of the � rst cell of the
grid (Mach 4, Rµ = 8 £ £ 103).

the limit is the same for two different codes, both based on second-
order-accuratenumerical schemes. The behavior below this limit is
different, with the common point that none of them is desirable.

The precedingsectionshows that the grid-convergedskin-friction
coef� cient behaves linearly with kC

s in the range kC
s D 0 ¡ 10. This

section shows that for a given kC
s the height of the � rst cell off the

wall must be at most kC
s =2 in order to avoid a spurious solution.The

last question to address is how small the � rst cell height must be in
order to be close to the grid-convergedrough-wall solution.

Grid Convergence of the Rough-Wall
Boundary-Layer Solution

Figure 4 shows the behavior of deviation (2) for three values of
kC

s when the grid is re� ned near the wall. The symbols are the ac-
tual results of computations with GASP in the Mach 4 case for
Rµ D 8 £ 103 . The lines are second-order polynomial � ts of the
computed data. The gray zone represents the range §1% around
the smooth-wall grid-converged value C f 0 . It is obvious that the
smaller kC

s , the larger the grid-sensitivity of the solution. The val-
ues of C f .kC

s / reach the limit ¡1% to C f 0 , when 1yC
1 ’ kC

s =2. For
kC

s below 0.5, the computed solution then stays in the §1% range
when the grid is further re� ned. However, for kC

s above 0.5 (see the
case kC

s D 2 in Fig. 4), the skin-friction value goes on through the
§ 1% range and reaches the signi� cantly different grid-converged
value associated with kC

s . In each case the 1% limit to the grid-
converged rough-wall solution is reached when the � rst cell height
is about 0.2.

In Ref. 4 Menter proposesusing the following rough-wallBC for
!: ¯0!w D 60ºw=1y2

1 . This conditionis equivalentto the rough-wall
BC equation (1) if ks D

p
.N¯0=60/1y1, which correspondsto a ra-

tio kC
s =1yC

1 very close to 2 (1.94). As just noted, this relationhas the
exact effect to keep the solutionat the edge §1% of the smooth-wall
valueC f 0 for valuesof kC

s between0–5 at least: thegrid-convergence
error compensatesfor the differencebetween the rough-walland the
smooth-wall values of the skin-friction coef� cient.

Conclusions
The value of the skin-friction coef� cient obtained on a � at plate

with the k¡! model and the rough-wall boundary condition for !
is highly sensitive to the scaled roughness height kC

s . This sensitiv-
ity, for kC

s below 5, is unphysical. When kC
s tends toward zero, the

grid-convergedcomputed skin-friction coef� cient tends toward the
smooth-wall value C f 0 . The deviation from C f 0 is directly propor-
tional to kC

s , with a veryweakdependanceon theMach andReynolds
numbers. Namely, C f .kC

s ; Rµ /=C f 0.Rµ / D 1 C .1:8 § 0:2/ kC
s =100.

This linear relationship is not observed when the grid is too coarse
to capture the asymptotic behavior of ! near the wall: with usual
second-ordernumericalmethods the � rst cell heightmust be smaller
than kC

s =2 to avoid spurious or diverged solutions. The observa-
tion of the relation kC

s =1yC
1 ’ 2 in the range kC

s D 0 ¡ 5, as recom-
mended by Menter, is suf� cient to avoid spurious solutions, but not
to get grid convergence.Quite surprisingly,the grid-convergenceer-
ror in the rough-wallsolutionyields almost exactly the smooth-wall
value of the skin friction. Finally, for the rough-wall skin-friction
coef� cient to be as close as x% to the smooth-wall value in a grid-

converged way, kC
s must be equal to x=2, and the � rst cell height

must be below the minimum of 0.2 and kC
s =2.
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Nomenclature
a = radius of pipe
F.¿ / = nondimensional f .t/
f = Fanning friction coef� cient for pipes, ¿w= 1

2 ½ Nw2
av

f .t/ = pressure gradient, ¡@ Np=@z
K = consistency index
K 0 = [.3n C 1/=4n]n K
L = section of pipe considered
l = lm =a
lm = turbulent mixing length
n = power-law exponent
Np = pressure
Q = volume � ow rate, ¼a2 Nwav

Re0 = Reynolds number; Eq. (10b)
r = radial distance from the centerline
T = time used in nondimensionalization
NTrz = Reynolds averaged stress component
t = time
u¿ = friction velocity, .¿w=½/1=2
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W = a.n=n C 1/.a1 Np=2KL/1=n

Nw = Reynolds averaged axial velocity
Nwav = velocity averaged over a pipe section
wC = Nw=u¿

y = distance from the wall, a ¡ r
yC = ½ynu.2 ¡ n/

¿ =K
z = axial coordinate
®, ¯ = parameters in F.¿ /
0 = j@’=@´jn ¡ 1

° = l2j@’=@´j
1 Np = pressure drop
´ = nondimensional radial distance, r=a
µ; Ã; ¸ = functions de� ned in Eqs. (3) and (5)
½ = density
¿ = nondimensional time, t=T
N¿rz = Reynolds stress
¿w = wall shear stress
’ = nondimensionalvelocity, Nw=W
Â = nondimensional y, y=a
!; & = de� ned in Eqs. (6) and (9)
. N ) = Reynolds average

Introduction

T HE subjectof � owofpolymeric� uidshasof latebecomeofsuf-
� cient importance and interest to the science and engineering

of aeronautics.It has been known for quite some time that the addi-
tion of polymers in Newtonian � uids reduces the drag on bodies in a
dramatic way. Much work has been done in the physical and chemi-
cal properties of polymers and in the formation of their constitutive
equations, e.g., Wilkinson,1 Bird et al.,2;3 and Berman,4 among oth-
ers.Becausemost of thepolymeric� uidscanbe approximated,some
time quite closely, as power-law � uids, the purposeof this Note is to
study the turbulent power-law � uids through circular pipes. A mix-
ing length model for Reynolds stress that is valid in the steady state
has been used. Following the leading works of Dodge and Metzner5

and Wilkinson,1 a formulationof Prandtl’s mixing length for steady-
state � ow has been proposed in this Note. Numerical solutions of
the governing equation of motion have been obtained, both for the
startup � ow (impulsive start with a constant pressure gradient) and
also of a superposed sinusoidal pressure gradient. For the purpose
of comparison,the laminar polymeric � ow solutionsunder the same
types of pressure gradients have also been reported here. Laminar
solutionshave been obtained earlier by Edwards et al.,6 Bird et al.,7

and Warsi,8 among others.

Analysis
We start our considerationsfrom the equation of motion of a con-

tinuum[e.g.,Ref. 9, Eq. (2.33)] and next considerits transformation
to orthogonal curvilinear coordinates [Ref. 9, Eqs. (3.115–3.118)].
We take the orthogonal coordinates as the cylindrical coordinates
(r , Á, z) and introduce the velocity components, pressure, and the
stress components as the sum of their mean and perturbation. On
taking the Reynolds averageof each term and assuming the average
of the stress perturbation to be zero, we get the averaged equations.
Using these averaged equations for the axial � ow through a circular
pipe, we obtain the equation

½
@ Nw
@t

D f .t/ C 1
r

@

@r
.r NTrz/ C 1

r

@

@r
.r N¿rz/ (1)

where T 0
rz is neglected.Consideringthe � ow to be thatof a power-law

� uid, we take

NTrz D K

­­­­
@ Nw
@r

­­­­
n ¡ 1

@ Nw
@r

(2a)

where, for a pseudoplastic � uid (solutions of polymers), the expo-
nent n < 1. The Reynolds stress is modeled by the Prandtl’s mixing
length theory as

N¿ rz D ½l2
m

­­­­
@ Nw
@r

­­­­
@ Nw
@r

(2b)

Substitutionof Eqs. (2) into Eq. (1) results in the differentiationof
absolutevalues.To circumventthisproblem,we changethe indepen-

dent variable r to y, where y D a ¡ r . With this change @ Nw=@y > 0
throughout from y D 0 to y D a, we can remove the absolute value
sign. Further, introducing the nondimensionalvariables

Â D y=a; ’ D Nw=W; ¿ D t=T; l D lm =a

and taking

T D
½an C 1

K W n ¡ 1
;

T f .t/

½W
D F.¿ /;

½an

K W n ¡ 2
D ¸

0 D
³

@’

@Â

´n ¡ 1

D
­­­­
@’

@Â

­­­­
n ¡ 1

; ° D l2

³
@’

@Â

´
D l2

­­­­
@’

@Â

­­­­(3)

while opening the derivatives and changing the variable Â to ´
through Â D 1 ¡ ´, we � nally have

@’

@¿
D F.¿/ C µ

´

@’

@´
C nÃ

@2’

@´2
(4)

where

µ D 0 C ¸° ¡ 2¸° l 0=l; Ã D 0 C 2¸° =n (5)

In this Note we consider the pressure gradient function f .t/ in
the form

f .t/ D 1 Np=L C ½c sin !t (6)

which covers both the startup � ow (case c D 0) and the superposed
� uctuations over the constant pressure gradient. To obtain F.¿/
de� ned in Eq. (3), we must assign a form to W . Here we are guided
to the form

W D n=.n C 1/[.1=2K /.1 Np=L/an C 1]1=n (7)

which reduces to the value of centerlinevelocity for the Newtonian
case where n D 1 and K D ¹. With the choiceof Eq. (7), the function
F.¿ / given in Eq. (3) is

F.¿/ D .an C 1=K W n/ f .t/

D 2[.n C 1/=n]n.1 C ® sin¯¿ / (8a)

where

® D ½cL=1 Np; ¯ D !T (8b)

Further

¸ D ½an=K W n ¡ 2 D [.n C 1/=n]n ¡ 22.n ¡ 2/=n& (9a)

where

& D .½a2=K 2=n/.a1 Np=L/.2 ¡ n/=n (9b)

Numerical Solution and Velocity Distribution
A deeper look at the stated problem, which aims at � nding the

steady-state distribution in polymeric � uids with turbulence, sug-
gests the use of complex approaches with transitional and wall ef-
fects with very small grid size near the wall. In this Note, however,
we approach the problem by starting the solution from some match-
ing point of the logarithmic layer and consequently use certain re-
sults from the pioneeringworks of Dodge and Metzner, which have
been elucidated in Ref. 1. The results from Ref. 1 for the � ow of
polymeric � uids through a circular pipe are stated in the following
and are valid only for the steady turbulent state:

1) Coef� cient of friction (Fanning coef� cient f ):

1
¯p

f D .4:0=n0:75/ log
£
Re0 f 1 ¡ n=2

¤
¡ 0:4=n1 ¢ 2 (10a)

where

Re0 D ½.2a/n Nw2 ¡ n
av

8n ¡ 1 K 0 ; K 0 D
³

3n C 1

4n

´n

K (10b)

2) Near-wall velocity distribution:
In the sublayer wC D .yC/1=n , where

wC D Nw=u¿ ; yC D ½ynu2 ¡ n
¿

¯
K ; u¿ D .¿w=½/

1
2

which in terms of ’.´/ is

’.´/ D a.1 ¡ ´/.½=K /1=n.u¿ /2=n
¯

W (11a)
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where

W D .3n C 1/ Nwav

n C 1
(11b)

In the turbulent core region the logarithmic velocity distribution in
terms of ’.´/ is

’.´/ D
u¿

W

"
5:66
n0:75

log

»
½an.1 ¡ ´/nu2 ¡ n

¿

K

¼
¡ 0:4

n1 ¢ 2

C 2:458
n0:75

»
1:96 C 1:255n ¡ 1:628n log

³
3 C 1

n

´¼ #
(12)

All of the formulas (10–12) reduce to the � ow of a Newtonian � uid
through a circular pipe for which n D 1, K D ¹.

Havingprescribedthevaluesofa, K , L , n, and1 Np, � rst thevalues
of W and Re0 through Eqs. (7) and (10) are calculated.The value of
Nwav is available through Eq. (11b). The values of n and Re0 are used

Fig. 1 Centerline velocity of a power-law � uid in laminar � ow state with startup condition.

Fig. 2 Centerline velocity of a power-law � uid in laminar � ow state with superposed sinusoidal pressure: ® = 2.5 and ¯ = 25.0.

in the transcendentalequation (10a) to compute f . We now choose
a value ´ D ´m close to 1 where Eq. (12) is applicable. The value
of ’.´m/ from Eq. (12) provides one of the boundary conditions
for the solution of Eq. (4). Equation (12) also guides us to choose
the proper form of the Prandtl’s mixing length. Differentiation of
Eq. (12) with respect to ´ guides us to the Prandtl’s mixing length
for power-law � uids as

lm D 0:4y=n0:25 or l D 0:4.1 ¡ ´/=n0:25 (13)

It must also be realized that we have posed a time-dependentprob-
lem through Eq. (4). For a startup � ow the � ow is not turbulent in
the beginning, but because we are interested only in the steady and
periodicallynonsteady� ows we have arbitrarily introduceda damp-
ing factor of time in the value of ’.´m / as shown in the numerical
example stated next.

For a numerical demonstration we have considered the poly-
mer solution (0.5% hydroxyethylcellulose at 313±K) for which the
parameters from Bird et al.2 are

n D 0:595; K D 0:3 Pa ¢ sn
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Fig. 3 Centerline velocity of a power-law � uid in turbulent � ow state with startup condition.

Fig. 4 Centerline velocity of a power-law � uid in turbulent state with superposed sinusoidal pressure: ® = 2.5 and ¯ = 25.0.

Further, we have taken

1 Np D 1:7 kPa; L D 1 m; a D 3:556 cm

½ D 1000 kg/m3

Calculationsusing these parameters give

f D 0:003122; W D 30:8703 m/s; Re0 D 82,729.6

(The value of f at the stated value of Re0 for Newtonian � uids is
’0:0046.) The Prandtl’s mixing length taken from Schlichting10

and modi� ed according to Eq. (13) is taken as

l D .0:14 ¡ 0:08´2 ¡ 0:06´4/=n0:25 (14)

In the present calculation we have chosen � ve grid points, with
1´ D 0:01, which are embedded in the sublayer and part of the
logarithmic layer. Thus, ´m D 0:95 at which ’.´m / D 0:476203. As
noted earlier, we make it time dependent as

’.´m; ¿/ D 0:476203
£
1 ¡ exp

¡
¡¿

p
c f Re0 =2

¢¤
(15)

Thus, the initial and the boundary condition for the startup � ow for
Eq. (4) are

’.´; 0/ D 0; ’.´m; ¿ /

prescribed as in Eq. (15). Equation (4) is discretized by using a
forward difference in ¿ and central difference in ´ The resulting
equation is solved by Young’s algorithm using Newton’s iteration.
On the centerline the value of ’.0; ¿ / is not known, but use has
been made of ’ 0.0; ¿ / D 0. Figures 1 and 2 show the centerline
velocity ’.0; ¿ / D ’c for the startup and superposed � uctuations
for the laminar case. Figures 3 and 4 show the centerline velocity
’.0; ¿ / D ’c for the turbulent case. The preceding data give the
reference time T D 65:302 s.

Conclusions
Numerical solution of the turbulent � ow of polymeric � uids, ap-

proximatedas power-law� uids,hasbeenobtainedfor � ows through
circular pipes. In this Note due advantagehas been taken of the em-
pirical formulas for the turbulent � ow through circular pipes. A
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new mixing length formula for power-law � uids has been proposed.
Though the solutions have been obtained from t D 0 to the steady
state, the transient solution can be considered as a parametric con-
tinuation, i.e., nonphysical solution caused by a lack of transition to
turbulent � ow modeling and transient turbulent modeling. Steady
state sets in around ¿ ’ 0:5.

References
1Wilkinson,W. L., Non-NewtonianFluids: Fluid Mechanics, Mixing and

Heat Transfer, Pergamon, Oxford, 1960, pp. 65–70.
2Bird, R. B., Armstrong, R. C., and Hassager, O., Dynamics of Polymeric

Liquids, Fluid Mechanics, 2nd ed., Vol. 1, Wiley, New York, 1987, p. 175.
3Bird, R. B., Curtiss, C. F., Armstrong, R. C., and Hassager, O., Dynamics

of Polymeric Liquids, Kinetic Theory, 2nd ed., Vol. 2, Wiley, New York,
1987, p. 279.

4Berman, N. S., “Drag Reduction by Polymers,” Annual Review of Fluid
Mechanics, Vol. 10, 1978, pp. 47–64.

5Dodge, D. W., and Metzner, A. B., “Turbulent Flow of Non-Newtonian
System,” A.I.Ch.E. Journal, Vol. 5, No. 2, 1959, pp. 189–204.

6Edwards,M.F.,Nellist, D. A., andWilkinson,W. L., “Unsteady,Laminar
Flows of Non-Newtonian Fluids in Pipes,” Chemical Engineering Science,
Vol. 27, 1972, pp. 295–306.

7Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena,
Wiley, New York, 1966, p. 65.

8Warsi, Z. U. A., “Unsteady Flow of Power-Law Fluids ThroughCircular
Pipes,” Journal of Non-Newtonian Fluid Mechanics, Vol. 55, No. 2, 1994,
pp. 197–202.

9Warsi, Z. U. A., Fluid Dynamics: Theoretical and Computational
Approaches, 2nd ed., CRC Press, Boca Raton, FL, 1998, pp. 37, 93.

10Schlichting, H., Boundary Layer Theory, translated by J. Kestin,
McGraw–Hill, New York, 1968, p. 568.

R. M. C. So
Associate Editor

Periodic Vibration of Plates
with Large Displacements

Pedro Ribeiro¤

Universidade do Porto, 4200-465 Porto, Portugal

Nomenclature
[K1b]; [K1 p] = linear bending and stretching stiffness

matrices
[K2]; [K3], and [K4] = components of nonlinear stiffness

matrix
[Mb]; [Mp] = bending and in-plane mass matrices
[N ] = matrix of shape functions
fqg = generalized displacements
u and v = in-plane displacements
w = transverse displacement
® = damping parameter

Introduction

T O characterize the geometrically nonlinear dynamic behavior
of plates, it is useful to de� ne their periodic response to har-

monic excitations in the frequency range of interest. There are sev-
eral ways to carry out this task.1 When � nite element (FE) models
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are used, one often applies the harmonic balance method (HBM)2

or the incremental HBM.3 In these methods the number of nonlin-
ear equations to solve simultaneously increases with the number of
harmonics used and can be very large. Moreover, the model will be
incorrectif the appropriateharmonicsare not includedin the Fourier
series.

The time-domain shooting method1;4 has two major advantages
when compared with the HBM. First, the number of equations to
solve is of the order of the original system. Second, it does not de-
pend on an a priori assumption of the number of harmonics present
in the motion’s Fourier spectrum. Unlike time-domain integration
methodsappliedon their own, like Newmark’s method, the shooting
technique provides a systematic procedure of calculating the peri-
odic motions in a certain frequency range and converges to stable
and unstable solutions. Moreover, the shooting method gives as a
byproduct the monodromy matrix, the eigenvalues of which de� ne
the solutions’ stability.1

In this work an algorithm based on the shooting and Newton
methods is used to solve the FE equations of motion of isotropic
plates. To validate it and to demonstrate that this algorithm has ad-
vantages when compared with other methods, results are compared
with published ones.

Finite Element Equations of Motion;
Shooting and Newton Methods

The hierarchicalFE method used to model geometricalnonlinear
vibrations of thin, elastic, isotropic plates is described in Ref. 2.
The model is derived applying the d’Alembert’s principle and the
principleof virtualwork. Consideringstiffnessproportionalviscous
damping,5 a system of n equations of motion of the following form
is derived:
µ

[Mp] 0

0 [Mb]

¶ »
Rqp

Rqw

¼
C ®

µ
[K1p ] 0

0 [K1b]

¶ »
Pqp

Pqw

¼

C
µ

[K1p] [K2]

[K3] [K1b] C [K4]

¶ »
qp

qw

¼
D

»
Pp

Pw

¼
(1)

or

[M]f Rqg C ®[K ]f Pqg C [KNL]fqg D fPg (2)

The subscripts p and b indicateif thevectorsandmatricesare caused
by the in-plane or bending effects.

Only � xed boundary conditions will be investigated, and, be-
cause in this case the middle plane in-planedisplacementsare much
smaller than the transverse displacement, the in-plane inertia and
damping will be neglected. The excitation vector fPg is periodic
with excitation frequency !.

To apply the shooting method, the system of n second-orderdif-
ferential equations of motion (1) is transformed into the following
2n system of � rst-order differential equations:

µ
0 [M]

[M] ®[K ]

¶ »
Py
Pq

¼
C

µ
¡[M] 0

0 [KNL]

¶ »
y

q

¼
D

»
0

P

¼
(3)

The period can be normalized to unity, by means of transformation
¿ D t=T , so that the integrationtime interval is [0, 1]. Therefore, the
system of differential equations (3) becomes
µ

0 [M]

[M] ®[K ]

¶ »
y0.¿ /

q 0.¿ /

¼

D T

³»
0

P

¼
¡

µ
¡[M] 0

0 [KNL]

¶»
y.¿ /

q.¿ /

¼ ´
(4)

where the prime denotes differentiationwith respect to ¿ .
By using a 2n phase-spacevector fX .¿/g D fy.¿ /; q.¿/g, one can

write an initial valueproblemrelated to the boundary-valueproblem
(4) as follows:


